A Quantum "Magic Box" for the Discrete Logarithm Problem
نویسنده
چکیده
In their foundational paper on pseudorandom bit generation, Blum and Micali showed that the discrete logarithm problem could be solved efficiently given a “magic box” oracle that computes the most significant bit of the discrete logarithm with a slight advantage over guessing. This magic box can be realized on a quantum computer with a new, simplified variant of Shor’s algorithm. The resulting combination of Blum and Micali’s reduction and this new quantum magic box offers an intriguing hybrid approach to solving the discrete logarithm problem with a quantum computer. Because the only requirement on the quantum portion of the algorithm is that it provide an approximate estimate of a single bit of the discrete logarithm, the new algorithm may be easier to implement, more resilient to errors, and more amenable to optimization than previous approaches. Further analysis is needed to quantify the extent of these benefits in practice. The result applies to the discrete logarithm problem over both finite fields and elliptic curves.
منابع مشابه
Generalized Jacobian and Discrete Logarithm Problem on Elliptic Curves
Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q...
متن کاملEfficient Quantum Algorithms for Estimating Gauss Sums
We present an efficient quantum algorithm for estimating Gauss sums over finite fields and finite rings. This is a natural problem as the description of a Gauss sum can be done without reference to a black box function. With a reduction from the discrete logarithm problem to Gauss sum estimation we also give evidence that this problem is hard for classical algorithms. The workings of the quantu...
متن کاملThe new protocol blind digital signature based on the discrete logarithm problem on elliptic curve
In recent years it has been trying that with regard to the question of computational complexity of discrete logarithm more strength and less in the elliptic curve than other hard issues, applications such as elliptic curve cryptography, a blind digital signature method, other methods such as encryption replacement DLP. In this paper, a new blind digital signature scheme based on elliptic curve...
متن کاملQuantum computation of discrete logarithms in semigroups
We describe an efficient quantum algorithm for computing discrete logarithms in semigroups using Shor’s algorithms for period finding and discrete log as subroutines. Thus proposed cryptosystems based on the presumed hardness of discrete logarithms in semigroups are insecure against quantum attacks. In contrast, we show that some generalizations of the discrete log problem are hard in semigroup...
متن کاملAn efficient blind signature scheme based on the elliptic curve discrete logarithm problem
Elliptic Curve Cryptosystems (ECC) have recently received significant attention by researchers due to their high performance such as low computational cost and small key size. In this paper a novel untraceable blind signature scheme is presented. Since the security of proposed method is based on difficulty of solving discrete logarithm over an elliptic curve, performance of the proposed scheme ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017